首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26439篇
  免费   4428篇
  国内免费   6898篇
测绘学   1161篇
大气科学   5026篇
地球物理   4123篇
地质学   13210篇
海洋学   3170篇
天文学   5164篇
综合类   1395篇
自然地理   4516篇
  2024年   67篇
  2023年   297篇
  2022年   826篇
  2021年   998篇
  2020年   1083篇
  2019年   1204篇
  2018年   1071篇
  2017年   968篇
  2016年   1133篇
  2015年   1232篇
  2014年   1734篇
  2013年   1883篇
  2012年   1818篇
  2011年   2014篇
  2010年   1852篇
  2009年   2282篇
  2008年   2113篇
  2007年   2152篇
  2006年   2048篇
  2005年   1727篇
  2004年   1504篇
  2003年   1280篇
  2002年   1085篇
  2001年   956篇
  2000年   828篇
  1999年   703篇
  1998年   588篇
  1997年   379篇
  1996年   312篇
  1995年   297篇
  1994年   250篇
  1993年   246篇
  1992年   156篇
  1991年   117篇
  1990年   102篇
  1989年   85篇
  1988年   75篇
  1987年   36篇
  1986年   38篇
  1985年   47篇
  1984年   41篇
  1983年   31篇
  1982年   26篇
  1981年   21篇
  1980年   21篇
  1979年   3篇
  1978年   10篇
  1977年   16篇
  1976年   2篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
China’s tourism industry has witnessed rapid progress in recent years, and is now an important part of global tourism in dealing with climate change. Within a framework of Pressure-State-Response (PSR), this paper focuses on the emission reduction pressure, carbon emission status, and responses of stakeholders in China’s tourism industry. Findings include: 1) The central government’s strategy and rapid growth of the industry scale exert rising pressure on China’s tourism to reduce carbon emissions. 2) Carbon emissions of China's tourism account for 13%-14.6% of global tourism, and about 3% of China’s emissions overall. Chinese tourists’ per capita carbon emission is lower than half of the global level. 3) The Chinese government attaches great importance to energy-saving and carbon emission reduction. In the tourism industry, documents, standards and other regulative measures have been issued to ensure that business practitioners set up green operational and managerial systems. In the field of tourism transportation, China's high-speed rail, new energy vehicles, and urban shared bicycles, have developed very rapidly in recent years, and they have effectively reduced the carbon emissions in traveling. Furthermore, this paper finds that Chinese tourists already have awareness and willingness for low-carbon tourism.  相似文献   
22.
Deep-sea microorganism research has become a hot topic in life science, owing to its special value in high pressure and low temperature environment. If not kept the in-situ low temperature and high pressure, it will cause the microorganism to lose its activity and lead to a waste of resources. A freeze-sediments valve presents a promising solution to maintain the low temperature and high pressure in situ, improve the success rate of sampling and shorten the sampling time. A series of experiments were conducted to characterize the freeze-sediments valve, including the sampling time without leakage, adaptation to different sediments and the effect of the length, etc. Most important of all, temperature change of sediments is observed in all experiments. Experimental results indicated that the freeze-sediments valve was formed in 5 min without leakage and the freeze-sediments valve could be applied to different sediments without limitations on sediments type and mineral content. Considering the pressure retaining capacity and formation time of freeze-sediments valve, it was found that the freeze-sediments valve with a length of 60–80 mm has good pressure retaining capacity whose value was 41.3–48.4 Mpa and short formation time which was 5 min. Precooling the sampler could be used to shorten the sampling time in the actual environment application. This sampling technique can play a vital role in maintaining in-situ low temperature at −2 to −4 ° Celsius in all the experiments. According to the tests, the sampling technique based on the freeze-sediments valve had the potential to solve the problem of keeping in-situ temperature, low sampling success rate and long sampling time in the future.  相似文献   
23.
API规范推荐的p-y曲线是由均质土体得到的,并未考虑土层间相互作用,Georgiadis基于柔性桩提出了等效深度法修正p-y曲线,把均质土p-y曲线延伸到了成层土体中。为了研究p-y曲线和等效深度法对于大直径单桩在成层土体中的适用性,取4种典型地质条件:成层砂土、砂土-黏土-砂土、成层黏土和黏土-砂土-黏土,通过L-PILE软件计算了6 m直径单桩基础的p-y曲线、桩顶水平荷载-位移曲线、桩身位移和弯矩。并与ABAQUS建立的单桩基础三维有限元模型计算结果进行比较。结果表明等效深度法对于成层砂土影响不大;对于成层黏土影响较大;对于中间为软弱土层的成层土体,在荷载较大时影响显著,等效深度法计算结果更加接近FEM结果。在成层土体中,p-y曲线应用于大直径单桩对于砂土高估了初始刚度,低估了极限抗力;对于黏土则低估了初始刚度和极限抗力。  相似文献   
24.
《China Geology》2020,3(3):462-472
The scientific field test site of rainfall-soil moisture-groundwater conversion in Dabie Mountain Area–Jianghan Plain is located in the northern region of the Jianghan Plain, the transition zone between the Dabie Mountain Area and Jianghan Plain. It’s a great field test site to study the material and energy exchange among rainfall, soil moisture, and groundwater of the Earth ’s critical zone in subtropical monsoon climate plain areas. This paper analyzed the connection between rainfall and volume water content (VWC) of soil at different depths of several soil profiles, and the dynamic feature of groundwater was discussed, which reveals the rainfall infiltration recharge of Quaternary Upper Pleistocene strata. The results show that the Quaternary Upper Pleistocene aquifer groundwater accepts a little direct rainfall recharge, while the lateral recharge is the main supplement source. There were 75 effective rainfall events among 120 rainfall events during the monitoring period, with an accumulated amount of 672.9 mm, and the percentages of effective rainfall amount and duration time were 62.50% and 91.56%, respectively. The max evaporation depth at the upper part in Quaternary cohesive soil was no less than 1.4 m. The soil profile was divided into four zones: (1) The sensitive zone of rainfall infiltration within 1.4 m, where the material and energy exchange frequently near the interface between atmosphere and soil; (2) the buffer zone of rainfall infiltration between 1.4 m and 3.5 m; (3) the migration zone of rainfall infiltration between 3.5 m and 5.0 m; and (4) the rainfall infiltration and groundwater level co-influenced zone below 5.0 m. The results revealed the reaction of soil moisture and groundwater to rainfall in the area covered by cohesive soil under humid climate in Earth ’s critical zone, which is of great theoretical and practical significance for groundwater resources evaluation and development, groundwater environmental protection, ecological environmental improvement, drought disaster prevention, and flood disaster prevention in subtropical monsoon climate plain areas.  相似文献   
25.
基于1951—2018年哈德里中心海温资料、美国气象环境预报中心和美国国家大气研究中心再分析资料和第四代欧洲中心汉堡模式, 针对1994年、2018年等西北太平洋热带气旋(TC)生成异常多的年份, 研究了引起TC增加的海表温度异常(SSTA)模态及其影响机制。结果表明, 北半球热带中太平洋增暖与印度洋变冷是夏季西北太平洋TC生成频数增加的主要原因, 北大西洋负三极型式SSTA促使TC生成的进一步增加。热带中太平洋增暖与印度洋冷却在菲律宾以东激发出西风异常和气旋性环流异常。北大西洋负三极型式SSTA在我国南海、菲律宾至东南沿岸激发出气旋性环流异常。前者在西北太平洋中部, 后者在南海产生有利于TC生成的局地环境。1994年和2018年夏季热带中太平洋出现暖SSTA、印度洋为冷SSTA、北大西洋呈现负三极型式SSTA, 西北太平洋TC生成频数极端增多。近30年来, 当出现热带中太平洋增暖和印度洋冷却时, 北大西洋表现出比1989年以前更强的负三极型式SSTA, 使西北太平洋TC生成频数和北半球热带印度洋-太平洋SSTA梯度的线性相关更显著。  相似文献   
26.
研究尼日尔三角洲东部深水区块发现,整个盆地从陆向洋具有3个大的构造分区:伸展拉张区、过渡区和挤压逆冲区。伸展区以大型同沉积断层伴生大量滚动背斜构造为特征,过渡区发育大量泥底辟构造,挤压区以复杂的逆冲叠瓦构造为主。通过分析形成机理,揭示东部深水转换带上M研究区构造特征,按构造的演化特征将该区构造分为泥底辟型、冲断-泥底辟混合型、逆冲型3种类型,提出研究区内的圈闭主要以构造-岩性圈闭为主,为尼日尔三角洲盆地深水勘探提供新的理论指导。  相似文献   
27.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
28.
The effects of root systems on soil detachment by overland flow are closely related to vegetation types. The objective of this study was to quantify the effects of two gramineous roots (Paspalum mandiocanum with shallow roots and Pennisetum giganteum with deep roots) on soil detachment capacity, rill erodibility, and critical shear stress on alluvial fans of benggang in south-east China. A 4-m-long and 0.12-m-wide flume was used. Slope steepness ranged from 9% to 27%, and unit flow discharge ranged from 1.39 × 10−3 to 4.19 × 10−3 m2 s−1. The mean detachment capacities of P. mandiocanum and P. giganteum lands were 18% and 38% lower than that of bare land, respectively, and the effects of root on reducing soil detachment were mainly reflected in the 0- to 5-cm soil layer. The most important factors in characterizing soil detachment capacity were root length density and soil cohesion, and soil detachment capacity of the two grass lands could be estimated using flow shear stress, soil cohesion, and root length density (NSE = 0.90). With the increase in soil depth, rill erodibility increased, whereas shear stress decreased. The mean rill erodibilities of P. mandiocanum and P. giganteum lands were 81% and 61% as much as that of bare land, respectively. Additionally, rill erodibilities of the two grass lands could be estimated as an exponential function by root length density and soil cohesion (NSE = 0.88). The mean critical shear stress of P. mandiocanum and P. giganteum lands was 1.29 and 1.39 times that of bare land, respectively, and it could be estimated with a linear function by root length density (NSE = 0.76). This study demonstrated that planting of the two grasses P. mandiocanum and P. giganteum could effectively reduce soil detachment and enhance soil resistance to erosion on alluvial fans, with the deep roots of P. giganteum being more effective than the shallow roots of P. mandiocanum. The results are helpful for understanding the influencing mechanism of root systems on soil detachment process.  相似文献   
29.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
30.
The use of heavy machinery during opencast coal mining can result in soil compaction. Severe soil compaction has a negative impact on the transport of water and gas in the soil. In addition, rainfall intensity has traditionally been related to soil surface sealing affecting water transport. To assess the effects of rainfall intensity and compaction on water infiltration and surface runoff in an opencast coal mining area, the disturbed soils from the Antaibao opencast mine in Shanxi Province, China, were collected. Four soil columns with different bulk densities (i.e., 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3, and 1.7 g cm-3) were designed, and each column received water five times at rainfall intensities of 23.12, 28.91, 38.54, 57.81, and 115.62 mm hr-1. The total volume of runoff, the time to start runoff, and the volumetric water contents at the depths of 5 cm, 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, and 65 cm were measured. Under the same soil bulk density, high rainfall intensity reduced infiltration, increased surface runoff, and decreased the magnitude of change in the volumetric water contents at different depths. Under the same rainfall intensity, the soil column with a high bulk density showed relatively low water infiltration. Treatments 3 (1.6 g cm-3) and 4 (1.7 g cm-3) had very small changes in volumetric water contents of the profiles even under a lower rainfall intensity. Severe soil compaction was highly prone to surface runoff after rainfall. Engineering and revegetation measures are available to improve compacted soil quality in dumps. Our results provide a theoretical basis for the management of land reclamation in opencast coal mine areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号